Projective summands in generators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projective Summands in Generators

An i?-module Mis a generator (of the category of modules) provided every module is a homomorphic image of a suitable direct sum of copies of M. Equivalently, some M has R as a summand. Except in the last section, all rings are assumed to be commutative, Noetherian domains, and modules are usually finitely generated. In this context generators are exactly those modules that have non-zero free su...

متن کامل

Syzygy Modules with Semidualizing or G-projective Summands

Let R be a commutative Noetherian local ring with residue class field k. In this paper, we mainly investigate direct summands of the syzygy modules of k. We prove that R is regular if and only if some syzygy module of k has a semidualizing summand. After that, we consider whether R is Gorenstein if and only if some syzygy module of k has a G-projective summand.

متن کامل

Bases and Ideal Generators for Projective Monomial Curves

In this article we study bases for projective monomial curves and the relationship between the basis and the set of generators for the defining ideal of the curve. We understand this relationship best for curves in P and for curves defined by an arithmetic progression. We are able to prove that the latter are set theoretic complete intersections.

متن کامل

Plünnecke’s Inequality for Different Summands

The aim of this paper is to prove a general version of Plünnecke’s inequality. Namely, assume that for finite sets A, B1, . . . Bk we have information on the size of the sumsets A + Bi1 + · · · + Bil for all choices of indices i1, . . . il. Then we prove the existence of a non-empty subset X of A such that we have ‘good control’ over the size of the sumset X + B1 + · · · + Bk. As an application...

متن کامل

Indecomposable Summands of Foulkes Modules

In this paper we study the modular structure of the permutation module H ) of the symmetric group S2n acting on set partitions of a set of size 2n into n sets each of size 2, defined over a field of odd characteristic p. In particular we characterize the vertices of the indecomposable summands of H ) and fully describe all of its indecomposable summands that lie in blocks of p-weight at most tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1982

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000019851